Step of Proof: symmetrized_preorder
12,41
postcript
pdf
Inference at
*
1
0
I
of proof for Lemma
symmetrized
preorder
:
1.
T
: Type
2.
R
:
T
T
3. Refl(
T
;
x
,
y
.
R
(
x
,
y
))
4. Trans(
T
;
x
,
y
.
R
(
x
,
y
))
Refl(
T
;
a
,
b
.
R
(
a
,
b
) &
R
(
b
,
a
))
latex
by PERMUTE{1:n, 1:n, 2:n}
latex
1
: .....wf..... NILNIL
1:
3.
a
:
T
.
R
(
a
,
a
)
1:
4. Trans(
T
;
x
,
y
.
R
(
x
,
y
))
1:
5.
a
:
T
1:
a
T
2
: .....wf..... NILNIL
2:
3.
a
:
T
.
R
(
a
,
a
)
2:
4. Trans(
T
;
x
,
y
.
R
(
x
,
y
))
2:
T
Type
.
Definitions
t
T
,
f
(
a
)
,
s
=
t
,
x
:
A
B
(
x
)
,
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
x
(
s1
,
s2
)
,
,
x
:
A
B
(
x
)
,
Type
,
x
:
A
.
B
(
x
)
,
P
&
Q
,
Refl(
T
;
x
,
y
.
E
(
x
;
y
))
origin